Critical Data Studies Meet Sociology
DOI:
https://doi.org/10.37062/sf.62.27811Nyckelord:
EditorialReferenser
Amaro, Ramon (2023) The black technical object. Cambridge: MIT Press.
Armstrong, David. (2019) “The social life of data points: Antecedents of digital technologies.“ Social Studies of Science 49(1) 102–117.
Barad, K. (2007) Meeting the universe half way. Durham: Duke University Press.
Benjamin, R. (2019) Race after technology. London: Polity.
Bowker, G.C. and S.L Star (1999) Sorting things out: Classification and its consequences. Cambridge: MIT Press.
Crawford, K. (2021) Atlas of AI: Power, politics, and the planetary costs of artificial intelligence. New Haven: Yale University Press.
Dalton, C. M., L. Taylor & J. Thatcher (2016) “Critical data studies: A dialog on data and space.” Big Data & Society 3 (1):1-9.
Deitz, S. (2023) “Outlier bias: AI classification of curb ramps, outliers, and context.” Big Data & Society, 10 (2):1-14.
Dencik, L. and A. Kaun (2020) “Datafication and the welfare state.” Global Perspectives 1 (1): 12912.
D’Ignazio, C. & L. Klein (2020) Data feminism. Cambridge: MIT Press.
Douglas‐Jones, R., A. Walford & N. Seaver, N. (2021) “Introduction: Towards an anthropology of data.” Journal of the Royal Anthropological Institute 27 (S1):9–25.
Elish, M.C. & D. Boyd (2018) “Situating methods in the magic of Big Data and AI.” Communication Monographs 85 (1):57–80.
Fleck, L. (1929 [1986]). “On the crisis of ‘Reality’’’, 47‒58 in R. Cohen & T. Schnelle (Eds.) Cognition and fact – Materials on Ludwik Fleck. Dordrecht: Reidel.
Hansen, K.B. & C. Borch (2022) “Alternative data and sentiment analysis: Prospecting non-standard data in machine learning-driven finance”, Big Data & Society 9 (1):1-14.
Harrison, K. (2024) Behind the science: The invisible work of data management in big science. Bristol: Bristol University Press.
Johnson, E. & S. Hajisharif (2024) “The intersectional hallucinations of synthetic data”, AI & Society. https://doi.org/10.1007/s00146-024-02017-8
Kaijser, Arne, Gustav Sjöblom, Johan Gribbe, & Per Lundin (2024) Maktens maskiner. Lund: Arkiv.
Kaun, A., A. Logsdon, P. Seuferling, F. Stiernstedt (2023) “Serving machines and heterotopias: Data entry work in prisons and refugee camps in the US and Uganda”, 144–161 in L. Parks, J. Velkova & S. De Ridder (Eds. ) Media backends: Digital infrastructures and sociotechnical relations. Urbana: University of Illinois Press.
Kim, Y., M. Finn, A. Acker, B. Chaudhuri, S. Wedlake, R. Ellis & J. Srinivasan (2024). “Epistemologies of missing data: COVID dashboard builders and the production and maintenance of marginalized COVID data”, Big Data & Society 11 (2): 1-14.
Kitchin, R. (2024) Critical data studies: An A to Z guide to concepts and methods. Hoboken: Polity.
Latour, B. (1987) Science in Action. Cambridge: Harvard University Press.
Latour, B. & S. Woolgar (1979) Laboratory life. Princeton: Princeton University Press.
Law, J. & J. Hassard (1999) Actor network theory & after. New Jersey: Wiley.
Law J (2004) After Method: Mess in Social Science Research. London: Routledge.
Lehtiniemi, T. and M. Ruckenstein (2022) “Prisoners training AI”, pp. 184-196 in S. Pink, M. Berg, D. Lupton, M. Ruckenstein (Eds) Everyday automation: Experiencing and anticipating automated decision-making. Abingdon: Routledge.
Leonelli, Sabina, Brian Rappert & Gail Davies (2017) “Data shadows: Knowledge, openness, and absence”, Science, Technology and Human Values 42 (2):191–202.
Lupton, D. (2018) “How do data come to matter? Living and becoming with personal data”, Big Data & Society 5 (2): 1-11.
M’charek, A., K. Schramm & D. Skinner (2014). “Topologies of race: Doing territory, population and identity in Europe”, Science, Technology, & Human Values 39 (4):468–487.
Metcalf, K. (2024) “Categorical misalignment: Making autism(s) in big data biobanking”, Social Studies of Science. Online First.
Milan, S. and E. Treré (2019) “Big data from the South(s): Beyond data universalism”, Television & New Media 20 (4):319–335.
Nafus, D. (2024). “Unclearing the air: Data’s unexpected limitations for environmental advocacy”, Social Studies of Science 54 (2):163–183.
Plantin, Jean-Christophe (2019) “Data cleaners for pristine datasets: Visibility and invisibility of data processors in social science”, ST&HV 44 (1):51–73.
Ribes, David (2019) “STS, meet data science, once again”, ST&HV 44 (3):514–539.
Ruckenstein, M. and L.L.M. Turunen (2019) “Re-humanizing the platform: Content moderators and the logic of care”, New Media & Society 22 (6): 1026-1042.
Ruppert E. and S. Scheel (eds) (2021) Data Practices: Making up a European People. London: Goldsmiths Press.
Savolainen, L. and M. Ruckenstein (2024) “Dimensions of autonomy in human–algorithm relations”, New Media & Society 26 (6):3472–3490.
Shapin, S. (2010) Never pure. Historical studies of science as if it was produced by people with bodies, situated in time, space, culture and society and struggling for credibility and authority. Cambridge: Harvard University Press.
Singh, R. (2023) “The backend work of data subjects: Ordinary challenges of living with data in India and the US”, 229–244 in L. Parks, J. Velkova & S. De Ridder (Eds.) Media backends: Digital infrastructures and sociotechnical relations. Urbana: University of Illinois Press.
Stevens, Marthe, Rik Wehrens & Antoinette de Bont (2018) “Conceptualizations of big data and their epistemological claims in healthcare: A discourse analysis”, Big Data & Society 5 (2):1–21.
Stevens, Marthe, S.R. Kraajieveld and T. Sharon (2024) “Sphere transgressions: Reflecting on the risks of Big Tech expansionism”, Information, Communication & Society 27 (15):2587–2599.
Suchman, L. (2007) Human-machine reconfigurations. Cambridge: Cambridge University Press.
Suchman, L. (2023). “The uncontroversial ‘thingness’ of AI”, Big Data & Society 10 (2): 1-5.
Thompson, T. L. (2020). “Data-bodies and data activism: Presencing women in digital heritage research”, Big Data & Society 7 (2): 1-7.
Thylstrup, N. B. (2019) “Data out of place: Toxic traces and the politics of recycling”,. Big Data & Society 6 (2): 205395171987547.
Tsing, A.L. (2005) Friction: An ethnography of global connection. Princeton: Princeton University Press.
Vardy, Mark. 2020. “Relational agility: Visualizing near-real-time Arctic sea ice data as a proxy for climate change”, Social Studies of Science 50 (5):802–820.
Velkova, J. (2016) “Data that warms: Waste heat, infrastructural convergence and the computation traffic commodity”, Big Data & Society 3 (2):1–10.
Velkova, J. and J.-C. Plantin (2023) “Data centers and the infrastructural temporalities of digital media: An introduction”, New Media & Society 18 (3): 273-286.
Vezyridis, Paraskevas & Stephen Timmons (2021) “E-Infrastructures and the divergent assetization of public health data: Expectations, uncertainties, and asymmetries”, Social Studies of Science 51 (4):606–627.
Zakharova, I., J. Jarke & A. Kaun (2024). “Tensions in digital welfare states: Three perspectives on care and control”, Journal of Sociology 60 (3):540–559.
Downloads
Publicerad
Referera så här
Nummer
Sektion
Licens
Copyright (c) 2025 Julia Velkova, Ericka Johnson

Detta verk är licensierat under en Creative Commons Erkännande-Ickekommersiell-IngaBearbetningar 4.0 Internationell-licens.
Allt material i Sociologisk Forskning publiceras med omedelbar öppen tillgång (open access), under Creative Commons-licensen CC BY-NC-ND 4.0.
Allt innehåll i tidskriften är fritt tillgängligt utan kostnad och får för icke-kommersiella syften fritt läsas, laddas ned, kopieras, delas, skrivas ut och länkas. Innehållet får dock inte ändras. När innehållet används måste författare och källa anges. Upphovsrätten till innehållet tillhör respektive författare. Inga publiceringsavgifter tas ut.