Critical Data Studies Meet Sociology

Författare

  • Julia Velkova Linköping University
  • Ericka Johnson Linköping University

DOI:

https://doi.org/10.37062/sf.62.27811

Nyckelord:

Editorial

Referenser

Amaro, Ramon (2023) The black technical object. Cambridge: MIT Press.

Armstrong, David. (2019) “The social life of data points: Antecedents of digital technologies.“ Social Studies of Science 49(1) 102–117.

Barad, K. (2007) Meeting the universe half way. Durham: Duke University Press.

Benjamin, R. (2019) Race after technology. London: Polity.

Bowker, G.C. and S.L Star (1999) Sorting things out: Classification and its consequences. Cambridge: MIT Press.

Crawford, K. (2021) Atlas of AI: Power, politics, and the planetary costs of artificial intelligence. New Haven: Yale University Press.

Dalton, C. M., L. Taylor & J. Thatcher (2016) “Critical data studies: A dialog on data and space.” Big Data & Society 3 (1):1-9.

Deitz, S. (2023) “Outlier bias: AI classification of curb ramps, outliers, and context.” Big Data & Society, 10 (2):1-14.

Dencik, L. and A. Kaun (2020) “Datafication and the welfare state.” Global Perspectives 1 (1): 12912.

D’Ignazio, C. & L. Klein (2020) Data feminism. Cambridge: MIT Press.

Douglas‐Jones, R., A. Walford & N. Seaver, N. (2021) “Introduction: Towards an anthropology of data.” Journal of the Royal Anthropological Institute 27 (S1):9–25.

Elish, M.C. & D. Boyd (2018) “Situating methods in the magic of Big Data and AI.” Communication Monographs 85 (1):57–80.

Fleck, L. (1929 [1986]). “On the crisis of ‘Reality’’’, 47‒58 in R. Cohen & T. Schnelle (Eds.) Cognition and fact – Materials on Ludwik Fleck. Dordrecht: Reidel.

Hansen, K.B. & C. Borch (2022) “Alternative data and sentiment analysis: Prospecting non-standard data in machine learning-driven finance”, Big Data & Society 9 (1):1-14.

Harrison, K. (2024) Behind the science: The invisible work of data management in big science. Bristol: Bristol University Press.

Johnson, E. & S. Hajisharif (2024) “The intersectional hallucinations of synthetic data”, AI & Society. https://doi.org/10.1007/s00146-024-02017-8

Kaijser, Arne, Gustav Sjöblom, Johan Gribbe, & Per Lundin (2024) Maktens maskiner. Lund: Arkiv.

Kaun, A., A. Logsdon, P. Seuferling, F. Stiernstedt (2023) “Serving machines and heterotopias: Data entry work in prisons and refugee camps in the US and Uganda”, 144–161 in L. Parks, J. Velkova & S. De Ridder (Eds. ) Media backends: Digital infrastructures and sociotechnical relations. Urbana: University of Illinois Press.

Kim, Y., M. Finn, A. Acker, B. Chaudhuri, S. Wedlake, R. Ellis & J. Srinivasan (2024). “Epistemologies of missing data: COVID dashboard builders and the production and maintenance of marginalized COVID data”, Big Data & Society 11 (2): 1-14.

Kitchin, R. (2024) Critical data studies: An A to Z guide to concepts and methods. Hoboken: Polity.

Latour, B. (1987) Science in Action. Cambridge: Harvard University Press.

Latour, B. & S. Woolgar (1979) Laboratory life. Princeton: Princeton University Press.

Law, J. & J. Hassard (1999) Actor network theory & after. New Jersey: Wiley.

Law J (2004) After Method: Mess in Social Science Research. London: Routledge.

Lehtiniemi, T. and M. Ruckenstein (2022) “Prisoners training AI”, pp. 184-196 in S. Pink, M. Berg, D. Lupton, M. Ruckenstein (Eds) Everyday automation: Experiencing and anticipating automated decision-making. Abingdon: Routledge.

Leonelli, Sabina, Brian Rappert & Gail Davies (2017) “Data shadows: Knowledge, openness, and absence”, Science, Technology and Human Values 42 (2):191–202.

Lupton, D. (2018) “How do data come to matter? Living and becoming with personal data”, Big Data & Society 5 (2): 1-11.

M’charek, A., K. Schramm & D. Skinner (2014). “Topologies of race: Doing territory, population and identity in Europe”, Science, Technology, & Human Values 39 (4):468–487.

Metcalf, K. (2024) “Categorical misalignment: Making autism(s) in big data biobanking”, Social Studies of Science. Online First.

Milan, S. and E. Treré (2019) “Big data from the South(s): Beyond data universalism”, Television & New Media 20 (4):319–335.

Nafus, D. (2024). “Unclearing the air: Data’s unexpected limitations for environmental advocacy”, Social Studies of Science 54 (2):163–183.

Plantin, Jean-Christophe (2019) “Data cleaners for pristine datasets: Visibility and invisibility of data processors in social science”, ST&HV 44 (1):51–73.

Ribes, David (2019) “STS, meet data science, once again”, ST&HV 44 (3):514–539.

Ruckenstein, M. and L.L.M. Turunen (2019) “Re-humanizing the platform: Content moderators and the logic of care”, New Media & Society 22 (6): 1026-1042.

Ruppert E. and S. Scheel (eds) (2021) Data Practices: Making up a European People. London: Goldsmiths Press.

Savolainen, L. and M. Ruckenstein (2024) “Dimensions of autonomy in human–algorithm relations”, New Media & Society 26 (6):3472–3490.

Shapin, S. (2010) Never pure. Historical studies of science as if it was produced by people with bodies, situated in time, space, culture and society and struggling for credibility and authority. Cambridge: Harvard University Press.

Singh, R. (2023) “The backend work of data subjects: Ordinary challenges of living with data in India and the US”, 229–244 in L. Parks, J. Velkova & S. De Ridder (Eds.) Media backends: Digital infrastructures and sociotechnical relations. Urbana: University of Illinois Press.

Stevens, Marthe, Rik Wehrens & Antoinette de Bont (2018) “Conceptualizations of big data and their epistemological claims in healthcare: A discourse analysis”, Big Data & Society 5 (2):1–21.

Stevens, Marthe, S.R. Kraajieveld and T. Sharon (2024) “Sphere transgressions: Reflecting on the risks of Big Tech expansionism”, Information, Communication & Society 27 (15):2587–2599.

Suchman, L. (2007) Human-machine reconfigurations. Cambridge: Cambridge University Press.

Suchman, L. (2023). “The uncontroversial ‘thingness’ of AI”, Big Data & Society 10 (2): 1-5.

Thompson, T. L. (2020). “Data-bodies and data activism: Presencing women in digital heritage research”, Big Data & Society 7 (2): 1-7.

Thylstrup, N. B. (2019) “Data out of place: Toxic traces and the politics of recycling”,. Big Data & Society 6 (2): 205395171987547.

Tsing, A.L. (2005) Friction: An ethnography of global connection. Princeton: Princeton University Press.

Vardy, Mark. 2020. “Relational agility: Visualizing near-real-time Arctic sea ice data as a proxy for climate change”, Social Studies of Science 50 (5):802–820.

Velkova, J. (2016) “Data that warms: Waste heat, infrastructural convergence and the computation traffic commodity”, Big Data & Society 3 (2):1–10.

Velkova, J. and J.-C. Plantin (2023) “Data centers and the infrastructural temporalities of digital media: An introduction”, New Media & Society 18 (3): 273-286.

Vezyridis, Paraskevas & Stephen Timmons (2021) “E-Infrastructures and the divergent assetization of public health data: Expectations, uncertainties, and asymmetries”, Social Studies of Science 51 (4):606–627.

Zakharova, I., J. Jarke & A. Kaun (2024). “Tensions in digital welfare states: Three perspectives on care and control”, Journal of Sociology 60 (3):540–559.

Downloads

Publicerad

2025-06-12

Referera så här

Velkova, Julia, och Ericka Johnson. 2025. ”Critical Data Studies Meet Sociology”. Sociologisk Forskning 62 (1-2):7-18. https://doi.org/10.37062/sf.62.27811.